微信关注,获取更多

显卡、GPU和CUDA的概念整理

声明
本文大部分摘自别人的博客,归纳整理。各博客链接在底部。

显卡、GPU和CUDA的概念整理

什么是显卡?

显卡(Video card,Graphics card)全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。就像电脑联网需要网卡,主机里的数据要显示在屏幕上就需要显卡。因此,显卡是电脑进行数模信号转换的设备,承担输出显示图形的任务。具体来说,显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来。
原始的显卡一般都是集成在主板上,只完成最基本的信号输出工作,并不用来处理数据。随着显卡的迅速发展,显卡也分为独立显卡和集成显卡。
独立显卡和集成显卡的区别:
所谓集成,是指显卡集成在主板上,不能随意更换。而独立显卡是作为一个独立的器件插在主板的AGP接口上的,可以随时更换升级。
另外,集成显卡使用物理内存,而独立显卡有自己的显存。一般而言,同期推出的独立显卡的性能和速度要比集成显卡好、快。
值得一提的是,集成显卡和独立显卡都是有GPU的。

什么是GPU?

GPU这个概念是由Nvidia公司于1999年提出的。GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片。那么1999年之前显卡上就没有GPU吗?当然有,只不过那时候没有人给它命名,也没有引起人们足够的重视,发展比较慢。

举例:

GPU和CUDA

如上图所示,这台PC机与普通PC机不同的是这里插了7张显卡,左下角是显卡,在中间的就是GPU芯片。
显卡的处理器称为图形处理单元(Graphic Processing Unit,GPU)。

自Nvidia提出GPU这个概念后,GPU就进入了快速发展时期。简单来说,其经过了以下几个阶段的发展:
1)仅用于图形渲染,此功能是GPU的初衷,这一点从它的名字就可以看出:Graphic Processing Unit,图形处理单元;
2)后来人们发现,GPU这么一个强大的器件只用于图形处理太浪费了,它应该用来做更多的工作,例如浮点运算。怎么做呢?直接把浮点运算交给GPU是做不到的,因为它只能用于图形处理(那个时候)。最容易想到的,是把浮点运算做一些处理,包装成图形渲染任务,然后交给GPU来做。这就是GPGPU(General Purpose GPU)的概念。不过这样做有一个缺点,就是你必须有一定的图形学知识,否则你不知道如何包装。
3)于是,为了让不懂图形学知识的人也能体验到GPU运算的强大,Nvidia公司又提出了CUDA的概念。

什么是CUDA?

CUDA(Compute Unified Device Architecture),通用并行计算架构,是一种运算平台。它包含CUDA指令集架构以及GPU内部的并行计算引擎。你只要使用一种类似于C语言的CUDA C语言,就可以开发CUDA程序,从而可以更加方便的利用GPU强大的计算能力,而不是像以前那样先将计算任务包装成图形渲染任务,再交由GPU处理。
注意,并不是所有GPU都支持CUDA。

补充

为了使用GPU的强大运算能力,需要进行GPU编程。然而现在GPU形形色色,比如Nvidia、AMD、Intel都推出了自己的GPU。
每个GPU生产公司都推出自己的编程库显然会让学习成本上升很多,因此苹果公司就推出了标准OpenCL,说各个生产商都支持该标准,只要有一套OpenCL的编程库就能对各类型的GPU芯片适用。当然了,OpenCL做到通用不是没有代价的,会带来一定程度的性能损失,在Nvidia的GPU上,CUDA性能明显比OpenCL高出一大截。
目前CUDA和OpenCL是最主流的两个GPU编程库。

CUDA的程序流程

CUDA的程序流程

CPU和GPU的关系

在没有GPU之前,基本上所有的任务都是交给CPU来做的。有GPU之后,二者就进行了分工,CPU负责逻辑性强的事物处理和串行计算,GPU则专注于执行高度线程化的并行处理任务(大规模计算任务)。
为什么这么分工?这是由二者的硬件构成决定的。

图:Control是控制器,ALU(Arithmetic Logic Unit)是算术逻辑运算单元,Cache是CPU内部缓存,DRAM就是内存。
CPU大部分面积为控制器和寄存器,与之相比,GPU拥有更多的ALU(Arithmetic Logic Unit,逻辑运算单元)用于数据处理。

为什么?

CPU要做得很通用。CPU需要同时很好的支持并行和串行操作,需要很强的通用性来处理各种不同的数据类型,同时又要支持复杂通用的逻辑判断,这样会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂,计算单元的比重被降低了。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。因此GPU的芯片比CPU芯片简单很多。

CPU是“主(host)”而GPU是“从(device)”,GPU无论发展得多快,都只能是替CPU分担工作,而不是取代CPU。

未经允许不得转载:下一个课程 » 显卡、GPU和CUDA的概念整理

评论

1+4=

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏